Pi-Crust: A Raspberry P1 Cluster Implementation

Eric Wilcox
Department of Computer
Science and Engineering

Texas A&M University
ewilcox42@gmail.com

Pooja Jhunjhunwala
Department of Computer
Science and Engineering
Texas A&M University

pi861992 @gmail.com

Abstract—Raspberry Pi is revolutionizing the computing in-
dustry. Originally designed to provide low cost computers to
schools it quickly expanded far beyond that. With this inexpensive
technology you can accomplish tasks previously unexplored. One
such set up is a cluster computer to run parallel jobs. Many
systems built for parallel computing jobs are either very expen-
sive or unavailable to those outside of academia. Supercomputers
are extremely expensive to own, use, power and maintain. Even
though average desktop computers have come down in price the
expense can still get quite high if you need a larger amount of
processing power. In this project, we take ten Raspberry Pi 2
computers and connect them over an ethernet network to build
a parallel version of a supercomputer. We show how one can be
built inexpensively and compare the performance of our system to
both desktop machines and supercomputers in use by academia.
We look at a price comparison as well as performance and
show the differences between the older versions of the Raspberry
Pi cluster computers and our own implementation. Our results
show that our Pi cluster implementation significantly outperforms
previous Pi cluster projects with the cost being similar. This
project strongly made us believe that the Raspberry Pi is a
great learning platform for academia and personal use and the
processing power at the cost involved is hard to beat.

I. INTRODUCTION

Raspberry Pi is an inexpensive credit card sized single board
general purpose computer originally developed in the UK. It
was conceptualized to give the schools access to widespread
computing at a very low cost. The Raspberry Pi 2 Model
B (released in February 2015) comes equipped with a 900
MHz quad-core ARM Cortex-A7 CPU (BCM2836) and 1GB
of RAM (LP DDR2 SDRAM). The cost of the new version
2 is the same as the older versions, at just $35. While not an
extremely powerful computer it has some significant benefits
such as compact size, reduced cost, low power consumption
and low heat generation. This makes it ideal not only for
the original intent in academia but also for many other
projects, such as building portable and energy-efficient cluster
computers. Some have even created honeypot traps simulating
web servers using the Raspberry Pi cluster computer setup [3].
In this framework not only can the researchers safely simulate
a web server to trap SQL injection attacks they can more
efficiently handle them in the cluster and through redirection
increase the amount of attack data that could be analyzed
[3]. With the new explosion of research into IoT (Internet
of Things) researchers show how the Raspberry Pi can be
used to provide an inexpensive and low power consumption

karthikgopavaram @ gmail.com

Karthik Gopavaram
Department of Computer
Science and Engineering

Texas A&M University

Jorge Herrera
Department of Computer
Science and Engineering

Texas A&M University
jorgeivan000 @ gmail.com

framework for service provisioning [7] which can be extended
in many ways including cluster systems or just networking the
units. Users today do not have to compromise on computing
power to take advantage of multicore benefits.

Raspberry Pi is one of the first low cost and reasonably high
performance computers to revolutionize the education industry.
It has afforded the current generation of students to interact
with computers in a way that was never possible before. It is
immensely successful as a single computer platform and we
wanted to investigate if it could also be a viable option for
building high performance cluster computers. The low cost
of the Pi was a critical driving factor for this project and
helped in materializing our motivation into a course project.
Therefore, the primary goal of the project is to study Raspberry
Pis capability to perform in a parallel and cluster computer
setup.Through this project we also investigate the cost of
building a general purpose parallel programmable machine
using low priced components and analyze if it meets the
requirements to be used as an instructional aid in a college
level parallel programming course.

Additional motivation for this project is to understand
the construction and benchmarking process of a computer
cluster. We wanted to study and implement the various aspects
required to build a fully functional cluster from the networking
protocols to MPI configuration. We also wanted to identify and
execute the standard performance benchmarks and evaluate
how the Pi cluster performance compares to traditional PCs
and supercomputers commonly used in academic labs. We also
want to compare the Pi cluster with commercial computers
and available cluster platforms in terms of cost, power, per-
formance, scalability and functionality. With these results we
aim to determine if it the Raspberry Pi cluster computer is a
feasible alternative for academic institutions that cannot afford
or utilize production clusters for educational purposes.

In this project, we build a cluster computer out of 10
Raspberry Pi 2 Model B units. We will discuss the required
equipment, the operating system on each one, how they
are connected, configured and tested. We will cover the
challenges and issues faced during this project and the
solutions we came up with. We will present the results
of benchmark testing the system and show comparisons
between older version Raspberry Pi clusters in addition to the
supercomputer available at Texas A&M. We will discuss the
actual price comparisons of this system versus some other

systems. Finally we will conclude with what was learned
from this project and possible avenues of future work.

II. PRIOR WORK

There has already been some prior work involving the
Raspberry Pi clusters. However, none of these previous Pi
clusters utilize the new Pi version 2 which we use and
benchmark in this project. The Bolzano Raspberry Pi cloud
cluster experiment implemented a 300 node Pi cluster [1].
The main goal of this project was to study the process and
challenges of building a Pi cluster on such a large scale .
Their work demonstrates how to setup and configure the
hardware, the system and the software. It also presents how
to monitor and maintain the system and utilize it as a cloud
cluster. However, the Bolzano project does not benchmark
the performance of their cluster which we do in this project.
The Iridis-Pi project implemented a 64 node Pi cluster [2].
Their work benchmarks the cluster performance using the
HPL Linpack benchmark and makes a strong argument for
utilizing Pi clusters in academia. However, their work does
compare the Pi cluster performance against desktop PCs
or a supercomputer like we do in this project. Lastly, the
Raspberry Pi based Beowulf cluster implemented a 32 node
Pi cluster [4]. This work documents the cluster construction
process and provides information on the clusters performance
and power consumption. But, this work also does not use the
HPL Linpack to benchmark cluster performance.

III. BUILDING THE CLUSTER
A. Equipment

In this section, we present all the various components used
to construct our ten node cluster computer. We also report the
cost of the components as we wish to demonstrate that building
a high performance Raspberry Pi cluster is very economical.
The components of the cluster include:

o Ten Raspberry Pi 2 Model B. The total cost for the Pis
is $350 ($35 each).

o Each Pi requires a microSD card as the Pi can boot
only from an SD-card. The Pi has been tested to support
microSD cards with sizes up to 32GB. We decided to
procure the 16GB SanDisk MicroSD cards. The ten SD-
cards cost us $87.90 total.

o We required ten micro USB cords to power the individual
Pis. The USB cords cost us $7.98 total.

o One ten port USB power strip costing $46.99.

o Two switches of eight ports each costing $59.98 total.
We decided to get two 8 port switches instead of a single
10 port switch as the cost of two 8 port switches was
slightly cheaper than one 10 port switch and had a better
performance rating.

o Ten ethernet cables costing $14.99 total. The cables are
used to connect the individual Pis to the switches. We
later realized that we required one extra ethernet cable to
connect the switches together.

o A lego block set costing $39.95. We used the legos to
build a structure to hold the cluster together in one place.
The lego structure is shown in Figure 2 and the complete
setup in Figure 3. The legos helped to make the cluster
portable, sturdy and added some aesthetic value to the
project. For a more permanent solution we recommend
super glue if you are going to use legos, that or internal
desktop construction parts.

This list does not include several other items we used in
the project. The Raspberry Pi by default needs a monitor
and keyboard at a minimum usually. We had these available
and did not have to purchase them. You can remote into
the system with another computer though and then those
would not always be needed. They do help considerably with
the initial setup though and we recommend having them
available, especially if you want easy quick access to the
system on a consistent basis without having to ssh into it from
another machine. For a regular computer monitor to work
you will need an hdmi to digital video adapter, assuming the
monitor has a digital input. Alternatively you can use any
hdmi enabled device. We started off with a television for the
setup at first. An hdmi cable is needed in that case but if you
have a television you can borrow the cable to get through the
setup. With shipping and handling and all the components
we did buy the total cost of the system was under $650
which is similar to the cost of a single multi-core PC or
laptop. Without the legos it was under $600 which should
be easily duplicated. Computing power of up to 40 cores is
possible with this setup compared to the 4 cores available in
a standard multi-core PC or laptop.

B. Design and Setup

The Cluster design consists of 10 Raspberry Pis wired by
switches in order to establish connection between them. One
raspberry pi is the master or head of the cluster. The other nine
are slaves or workers. You can see the configuration setup in
1. The network configuration was established by setting static
IP addresses to each node. The master has the address of every
other node, and it is the only one that can talk to every node.
The slaves can only communicate with the master node. We
will detail that more below.

The first phase of the project was to setup the individual
Raspberry Pis to be able to operate in a cluster computer
environment. Below is an overview of the procedure involved
in setting up the Pis:

o First, we needed to install and configure an operating
system for the Raspberry Pi. We choose to use the
Raspbian OS since it is a well documented and widely
used operating system for Raspberry Pi. Another reason
for using Raspbian is that it comes with many programs
already installed and there is a lot of support and docu-
mentation available. The Raspbian operating system came
bundled with Python version 2.7.6.

o The Raspberry Pi can boot only from the microSD card.
Therefore, we formatted the microSD card to include the

bootloader and the Raspbian operating system.

o Once we were able to boot up a single Raspberry Pi, we
further configured the operating system and installed all
the required dependencies.

o The next important step was to add some parallel pro-
gramming framework on to the Pis for them to be able
to communicate with each other and behave like one
individual cluster. We chose to equip the Pis with MPI
(Message Passing Interface) by installing MPICH and
MPI4Py. The libraries were needed for coding in python
for the parallel algorithms and they included some testing
utilities we wanted to take advantage of as well.

e Once the operating system and parallel programming
framework was configured completely for a single Pi,
the operating system image was just burned onto the
SD cards for the other Raspberry Pis so as to avoid
the repetition of the work for each Pi. The simplest and
quickest way to accomplish this is to make a disk image
of the SD Card on another system and then image the
other SD Cards from that. This process can be very time
consuming so patience is key.

This should leave you with all the Pis as an exact duplicate
of the first. The next step was the network configuration. The
Pis were set up as master and slave to enable them to function
as a cluster computer. One Pi was designated the head node or
master of the cluster, and the nine other Pis were configured as
the slaves. First we accessed each Pi individually and gave it
a static IP address. We chose the 192.168.4.0 domain for this
project but if you have a network you are setting the system
up with you should choose a range of addresses which would
not be normally assigned by your router. We had our head
node labeled Pi10-Head at 192.168.42.10 and the other nodes
as Pi01 at 192.168.42.1 then 2 and so on. This was also a good
time to change the label of each Pi in the configuration. We
want 192.168.42.1 to be labeled PiOl and so forth. This was
important so you could see at the time of any login which Pi
you were in and know the corresponding IP. The IP scheme
would need changed for systems greater the 255 nodes, but
we recommend similar logic to naming and addressing them.

After the static addressing we could then SSH into each
node from the master with them all connected to the switches,
but the default password of raspberry was needed each time.
The master node needed passwordless access into the slave
Pis over SSH for the cluster to function correctly and this was
achieved by generating SSH keys for each Pi and sharing the
keys of each slave node with the master node. The master
node’s key was added to the list of authorized keys for each
of the slave nodes and the keys of the slave nodes was added
to the authorized keys list of the master node. This ensured
that the slave nodes could talk to the master node at will and
vice versa. It is not necessary to have all the slave nodes keys
on the slaves as they only communicate in this setup with the
master node.

One of the issues we faced while configuring and
benchmarking the individual Raspberry Pis was that some
of the files needed to be copied to every node. This task

Master

Master has a file with IP addresses
E for all slaves.
Static IP addresses were given to
\ all raspberries (even master).
e T
o N
J

Switch

j

Slaves

Fig. 3. Complete cluster setup while running.

is repetitive and can get exhaustive when working with a
large cluster computer. Therefore, in order to optimize the
time invested in this task, we developed a simple script to
automate the process of copying files to every Raspberry
Pi. Our script was rather simplistic just taking a file or
directory to copy to all nodes in a loop. However, for a more
permanent design we recommend a more developed script for
both copies and removes from all nodes. These operations
on files can get repetitive if you have to SSH into each node
individually and for anything larger than a ten node cluster we
imagine it would be both extensive and unsafe to do manually.

IV. EVALUATION

A. Benchmarks

The tests run on the raspberry cluster aimed to deter-
mine if the cluster was scalable, i.e. if the inclusion of
more cores added to the processing capacity of the cluster.
Another parameter that the tests aimed to measure was to
determine if the cluster displayed a performance comparable to
a conventional, commercial, supercomputing cluster in terms
of computing power per unit cost and per unit power. The
problem chosen to test the first parameter was a matrix
multiplication problem. Matrix multiplication is among the
most common and frequently used computation and is very
computationally intensive. It is also a highly parallelizable
problem and, therefore, was chosen as the problem to be
analyzed for the performance of the cluster. The problem
executed on the p node cluster was the multiplication of two
square matrices, A * B, with dimensions nzn each. A replica
of matrix B was provided to every process, and n/p rows
of matrix a were provided to each processor. Each processor
calculated n/p rows of the output matrix in parallel. These
rows are then transmitted to the head node and combined
into one final matrix. This test was carried on varying number
of processors, starting from one processor and increasing the
number of processors by one till we reached ten. The same
experiment was run on the Eos cluster of Supercomputing
facility at Texas A&M University on the Nehalem nodes in
the same procedure as was done for the Pi cluster. The results
for this experiment are displayed in Figures 4 and 5.

Another test run on the Raspberry Pi cluster was the High
Performance Linpack (HPL) Benchmark test. HPL solves a
(random) dense linear network in double precision (64 bits)
arithmetic on distributed memory computers. It is a widely rec-
ognized performance benchmark for systems like the cluster
and therefore was chosen to test the performance of the cluster.
The HPL Benchmark was tested for various configurations.
To determine the scalability of the system, the problem size
was kept constant and the number of processors was gradually
varied from one to ten. The results obtained are displayed in
Figure 6. The results obtained from the HPL benchmark test
were compared against an older version Raspberry Pi cluster
setup and against a Yellowstone supercomputer as seen in
Figures 8 and 9.

In order to get the best possible results out of HPL bench-
mark, we had to fine tune several configuration parameters in
the input file HPL.dat. The values for these tunable parameters
depended on several factors such as the processing power,
memory of the available cluster, cluster size and layout etc.
[8]. Some of these parameters could be deduced from the
system characteristics while the others required a trial and
error approach. There is no formula mentioned anywhere in
the guidelines to get the best performance out of the cluster.
Therefore, we ran the HPL benchmark multiple times with
different parameter values to extract the best possible perfor-
mance from the Pi cluster. The most important parameters that
we had to configure are:

MPI Matrix Vector Product

25 —e— TAMU Supercomputer
—e— PiCrust

Completion Time in Seconds

#of Nodes

Fig. 4. MPI matrix vector product completion time between TAMU super-
computer and Pi-Crust cluster.

o Number of problems sizes (/NV).- In order to extract the
best performance out of the system, we need to have
the largest problem size that can fit in the memory.
The amount of memory used by HPL is essentially
the size of the coefficient matrix. For our cluster, the
maximum possible value for N is 32768. However, we
were unsuccessful in reaching this maximum value. The
cluster was able to produce results for NV at 17400 with 10
processors (one core each). And, when the cluster utilized
all 40 cores, we could only reach a value of 10000 for V.
For all the values over 10000, we were unable to produce
results as the cluster kept crashing with errors.

e Number of NBs.- HPL uses the block size NB for
the data distribution as well as for the computational
granularity. From a data distribution point of view, the
smaller the N B, the better the load balance. It is prefered
not to have very large values of NV B. From a computation
point of view, a too small value of NB may limit the
computational performance by a large factor because
almost no data reuse will occur in the highest level of the
memory hierarchy. Therefore, we were unsure what the
optimal value of N B was for our cluster. We took the trail
and error approach and measured cluster performance
with N B values at 32, 64 and 128.

o Number of process grids (Pz(Q).- The values of P and
@ depend on the physical interconnection network used.
Assuming a mesh or a switch, HPL prefers a 1 : k ratio
with k in [1..3]. In other words, P and @ should be
approximately equal, with @ slightly larger than P. The
best values for our cluster are 5 and 8 for P and Q.

Our best performance result was generated with the values
N = 10000, NB = 128, P = 5 and Q = 8. We strongly
believe that we could have extracted higher performance had
been able to run the HPL benchmark with larger problem sizes
N.

B. Results

The Raspberry Pi cluster computer displayed very promis-
ing results with the tests conducted on them. The aim of the
project was to test the feasibility of the Raspberry Pi cluster
as a teaching aid to teach parallel programming. Programming
on the cluster was done in Python using MPI4Py and the
programming experience was quite flexible. The parameters

MPI Matrix Vector Product

—e— TAMU Supercomputer
—e— picrust

#of iterations per second
8

#of Nodes

Fig. 5. MPI matrix vector product iterations per second between TAMU
supercomputer and Pi-Crust cluster.

Pi-Crust HPL Linpack Benchmark

Fig. 6. Pi-Crust HPL Linpack Benchmark test from 1 to 10 nodes.

PiCrust vs Intel/AMD Processors

Fig. 7. Pi-Crust Mflops performance chart vs Intel and AMD processors [5].

could be tuned easily as the whole cluster was at the users
disposal.

The result of the matrix multiplication showed that the
cluster scales almost linearly when tested with a low effort
parallelization program like the matrix multiplication problem.
The cluster performs considerably slower than the Texas A&M
supercomputer, but the power consumed and the cost of the
Pis is also significantly lower than that of the supercomputer
node. This justifies the performance gap between the two
systems. However, in order to used the cluster as a teaching
aid, functionality is more important than the raw performance,
and the tests demonstrate that the cluster is a good abstraction
of a high cost cluster computer, albeit at a smaller scale. The
similar scaling patterns of the supercomputer and the Pi cluster
attest to this observation.

The High Performance Linpack benchmark tests performed
very well on the Pi, cluster, too. As shown in 7, the Pi was
able to achieve a performance of 3881 MFLOPs while using
10 CPUs which puts its performance significantly better
than the Intel i7 3930K processor [5], which is a Hexa
core processor, with each core clocked at 3.2 GHz, for a
comparable price range at the time of writing this paper. The

15.6 Watts 20/27 Watts
836 MFLOPS | 3881 MFLOPS
$250.00 $600.00
54.8 165.2
3.4 6.5

Fig. 8. Pi-Crust analysis verses version 1 Raspberry Pi clusters as found in

[6].

20/27 Watts 1.4 MWatts
3881 MFLOPS | 1.2 PFLOPS
$600.00 $22,500,000.00
165.2 875.3
6.5 57.2

Fig. 9. Pi-Crust analysis Yellowstone supercomputer, as found in [6].

advantage of using a Pi cluster over a general purpose Intel
processor is the customizability that comes with being able
to control the hardware at will.

V. CHALLENGES

In this section, we present some of the problems and
challenges that we encountered during different phases of the
project:

e Code corruption: While testing the raspberry pi cluster
computer, some nodes did not perform any computation.
After troubleshooting and debugging the issue, we found
that the problem was caused due to corrupted code files
inside the SD-card of those particular nodes. Since the
cluster is running the same code inside every node, it
is required that every node have the same non-corrupted
copy of that file for the cluster to function correctly.

o Supercomputer configuration: The performance of the Pi
cluster was to be compared against the performance of
the Texas A&M supercomputer and it was essential to
have the same configurations on both machines. The same
versions of Python and MPI4Py were installed in a virtual
environment in the supercomputing Eos cluster. During
the execution of the programs on the supercomputing
cluster, we observed that the programs ran correctly in
the interactive mode, but when a batch job was submitted,
the cluster ran p individual instances of the code, rather
than running one process with p threads. This happened
consistently for some time and it was difficult to figure

out how to debug the issue. We finally got help from the
supercomputing facility staff and realized that we were
loading OpenMPI for the batch jobs, and Intel MPI for
the interactive jobs and the two versions of MPI were
causing the difference in performance.

Supercomputer HPL configuration: We ran the High
Performance Linpack (HPL) benchmark on the Pi cluster
and wished to run the same benchmark on the Eos
supercomputing cluster. However, the configurations for
the Linpack benchmark on the Eos cluster (LinpackX)
were very different from the HPL configuration and it was
difficult to know if they were giving results for the same
set of parameters. This was the reason that the Linpack
benchmarks for the Eos cluster were not reported in the
results.

Raspberry Pi HPL guidelines inaccurate: It took us
considerable time and effort to setup and run the HPL
Linpack on the Pi cluster. The documentation available to
setup the HPL Linpack was incomplete and inconsistent.
It took us multiple tries with the setup to troubleshoot
and fix all the issues.

Random reboots: This problem happened occasionally
while performing long benchmark runs. It may have to
do with processor overheating. However, the reboots were
not that frequent and did not recur after the first night.
If heat ever did become a problem it would be a simple
thing to attach small fans (even USB) or even heat sinks
to the processors.

HPL configuration issues: In order to get the best possible
results out of HPL benchmark, we had to fine tune several
configuration parameters. There is no formula mentioned
anywhere in the guidelines to get the best performance
out of the cluster. Through extensive testing we found
good values but challenges arise with not knowing all
the details of the HPL testing benchmark. The goal
is giving the processors as much as they can handle
and recording what performance they achieve under a
maximum load. Sometimes trial and error is the best plan
to try for the best result. The guidelines tell you to try
changing them until better results are achieved. With a
better understanding of the parameters and how data is
being calculated and swapped around on the processors
achieving the ideal result becomes guesswork to some
extent.

Benchmarking took considerable time: The HPL
benchmark configurations to achieve the best results
(Higher Mflops) took notoriously long to complete each
run. The better the results we wanted to produce, the
longer the benchmark would have to be run. A lot of
time was invested in benchmarking due to this situation.

VI. FUTURE WORK

for programming using MPIL.

e An additional Solid State Disk could be added to the
cluster which could behave as a shared memory for the
cluster opening up avenues for other paradigms of parallel
programming, like OpenMP.

o The cluster can be further parallelized by running one
thread of the process on each of the four cores of every
Raspberry Pi. In this project, we go up to the granularity
of individual Pis as the programming was done in Python.

o The Pi cluster needs to be tested for non-trivial parallel
programs to truly understand the communication over-
heads incurred due to the distributed nature of the cluster
(no shared memory).

e Some mechanism for fault tolerance needs to be built
into the system, either in the form of redundant nodes,
or as some backup mechanism with a rollback feature
to a consistent state. There were instances when Pis lost
power due to faulty connections, resulting in reboots and
erroneous test results.

o The entire cluster could be made more portable by
building a case for the entire setup which could house
the switches and the power strip as well.

o The Pis on the cluster were assigned static IPs for them
to be able to communicate with each other. However,
this disabled them from having internet access. In the
future, the Pis could be connected over a router, enabling
dynamic IPs, and subsequently, internet access.

VII. CONCLUSION

The main goal of this project was to build a Raspberry
Pi cluster computer and compare its performance against
a more robust supercomputer. We accomplished this goal
and successfully built a fully functional ten node Raspberry
Pi 2 Model B cluster computer. The results using the
standard performance and included MPI python benchmarks
demonstrate that the Raspberry Pi cluster is a very promising
alternative to multi-core PCs and cluster computers commonly
used in academia. Throughout this project we have also
demonstrated that the Pi cluster can be constructed at a very
economical cost. It would be beneficial to use these low cost
cluster computers in academia as well as many other fields.
Universities or research institutes that do not have the space
or budget to acquire a large scale supercomputer could opt
to build their own cluster computer made of Raspberry Pis.
Individuals, hobbyists and even corporations should be taking
advantage of these systems, either at the individual level or
by putting cluster systems together. This project has been
both fun and extremely educational for us and we know it
could be for others as well.

ACKNOWLEDGMENT

The Raspberry Pi cluster has great potential for future work. We would like the thank Dr. Daniel A. Jimnez at Texas

o More functionality can be added to the Pi in terms of A&M University for his funding and support of this project.

additional programming languages supported by the Pi

(1]

(2]

(3]

(4]
(51
(6]

(71

(8]

REFERENCES

P. Abrahamsson, S. Helmer, N. Phaphoom, L. Nicolodi, N. Preda,
L. Miori, M. Angriman, J. Rikkila, Xiaofeng Wang, K. Hamily, and
S. Bugoloni. Affordable and energy-efficient cloud computing clusters:
The bolzano raspberry pi cloud cluster experiment. In Cloud Comput-
ing Technology and Science (CloudCom), 2013 IEEE 5th International
Conference on, volume 2, pages 170-175, Dec 2013.

Simon J. Cox, James T. Cox, Richard P. Boardman, Steven J. Johnston,
Mark Scott, and Neil S. O’brien. Iridis-pi: A low-cost, compact demon-
stration cluster. Cluster Computing, 17(2):349-358, June 2014.

S. Djanali, EX. Arunanto, B.A. Pratomo, H. Studiawan, and S.G. Nu-
graha. Sql injection detection and prevention system with raspberry
pi honeypot cluster for trapping attacker. In Technology Management
and Emerging Technologies (ISTMET), 2014 International Symposium
on, pages 163-166, May 2014.

Joshua Kiepert. Creating a raspberry pi-based beowulf cluster. Boise
State University, pages 1-17, 2013.

Roy Longbottom. Linpack benchmark results on pcs. http:/www.
roylongbottom.org.uk/linpack%20results.htm, May 2015.

Justin ~ Moore. Performance benchmarking a raspberry
pi cluster. https://www?2.cisl.ucar.edu/siparcs/calendar/
raspberry-pi-benchmarking-performance, 2014.

L.H. Nunes, L.H. Vasconcelos Nakamura, H. De F Vieira, RM.
De O Libardi, E.-M. de Oliveira, L. Junqueira Adami, J.C. Estrella, and
S. Reiff-Marganiec. A study case of restful frameworks in raspberry pi: A
performance and energy overview. In Web Services (ICWS), 2014 IEEE
International Conference on, pages 722-724, June 2014.

A. Petitet, J. Whaley, R.C.and Dongarra, and A. Cleary. Hpl faq. http:
/Iwww.netlib.org/benchmark/hpl/fags.html, September 2008.

